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Finite-Element Simulation of Moving 
Induction Heat Treatment 

K.E Wang, $. Chandrasekar, and H.T Y. Yang 

An efficient finite-element procedure with a remesh scheme has been developed for the analysis of the 
moving induction heat treatment process, wherein relative motion occurs between the coil and the work- 
piece. In this procedure, the magnetic field is first simulated by using an updated mesh that tracks the 
moving coil position; the moving heat source within the workpiece material is derived from the magnetic 
field. The heat equation is then solved to obtain the temperature field created by the heat source. The pro- 
cedure has been applied to calculate the temperature distributions in 1080 carbon steel cylinders during 
induction heating. The calculations have been validated by comparison with analytical solutions for the 
temperature distribution obtained using Green's function methods. Finally, the temperature, residual 
stress, and microstructure distributions in quenched 1080 steel cylinders have been obtained using the fi- 
nite-element procedure. Quenching of the heated cylinders, by both a moving cooling ring and a station- 
ary liquid bath, has been analyzed. The finite-element procedure presented incorporates temperature-dependent 
material properties, phase transformations occurring in the 1080 steel, the change in magnetic perme- 
ability of the 1080 steel at the Curie temperature, and an elastoplastic stress model based on a mixed 
hardening rule. The simulation results demonstrate that the finite-element procedure could be applied to 
a variety of moving induction heat treatment problems to determine the residual stress and microstrue- 
ture distributions in the heat-treated component. It also could be used in the design of process parameters 
and coils. 
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1. Introduction 

TWO types of induction heat treatment processes are com- 
monly used in industry: stationary induction heat treatment and 
moving induction heat treatment. In stationary induction hard- 
ening, the workpiece--which is made of an electrically con- 
ducting material--is stationary and is surrounded by stationary 
coils carrying an alternating electric current. No relative mo- 
tion occurs between the coils and the workpiece. The electro- 
magnetic field produced by the current-carrying coils induces 
eddy currents in the workpiece, which thus is heated resistively. 
After the workpiece has attained a suitable temperature, it is 
quenched; workpiece hardness and microstructure change dur- 
ing this heating and quenching cycle due to phase transforma- 
tions. Residual stresses also are introduced into the material. 

In moving induction heat treatment, relative motion occurs 
between the coil and the workpiece during induction heating, 
and the workpiece may be quenched by a moving cooling ring. 
As in the stationary process, residual stresses are introduced 
into the workpiece along with hardness and microstructural 
changes. Moving induction heat treatment is commonly used to 
harden piston pins, crankshafts, and camshafts. 

Several computational and analytical studies have been 
made of stationary induction heat treatment. Dodd and Deeds 
(Ref 1) obtained analytical solutions for induction heating 
problems by assuming a constant permeability. Subsequently, 
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finite-element methods were used by Donea et al. (Ref 2) and 
Charf (Ref 3) to obtain the electromagnetic vector potential for 
axisymmetrc and two-dimensional problems. The calculation 
of residual stress and hardness in an infinitely long cylinder 
produced by induction heat treatment was presented by Melan- 
der (Ref 4). More recently, efficient finite-element simulation 
procedures have been developed and validated to simulate the 
stationary induction heat treatment of workpieces having axi- 
symmetric or two-dimensional geometry (Ref 5). A detailed re- 
view of the principles and applications of induction heat 
treatment is also given in Ref 5. 

The literature pertaining to the simulation of moving induc- 
tion heat treatment is quite limited. The induction heat treat- 
ment of a moving, infinitely long cylinder by a stationary coil 
has been analyzed by Melander (Ref 6) using finite-element 
and finite-difference methods. In this analysis, the material 
properties of relevance for calculating the magnetic field were 
assumed to be temperature independent and the geometry of 
the workpiece was limited to that of an infinitely long cylinder. 
Furthermore, the heat conduction equation was solved assum- 
ing steady-state conditions, and a one-dimensional model was 
used in the residual stress analysis. Such a model is based on the 
assumption that the temperature distribution within the moving 
cylinder has reached its steady-state condition. 

In the present study, a finite-element procedure has been de- 
veloped and applied to model the magnetic and temperature 
fields and the microstructure and thermal stress evolution in 
moving induction heat treatment processes. The finite-element 
procedures are not limited to infinitely long cylinders but can 
simulate the heat treatment of axisymmetrfc workpieces of fi- 
nite length or of two-dimensional geometry. The simulation re- 
suits have been validated by comparison with analytical 
solutions for the magnetic and temperature fields in a variety of 
moving induction heating problems. 
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2. Computational Model 

2.1 Analys i s  o f  the  M a g n e t i c  F ie ld  

To estimate the heat sources generated within the material 
during induction heating, it is first necessary to derive the mag- 
netic vector potential in the workpiece due to a current flowing 
through the induction coil. This requires solution of  Maxwell's 
electromagnetic field equations. In terms of  the magnetic vec- 
tor potential (A') (Ref 7), 

1 , ~A" 
V x (-- V x A ) = - o--v- + J'0 (Eq 1 ) 

it Ot 

where J'0 = - o V O  is the source current density. During induc- 
tion heating, the current in the coil is sinusoidal with a fre- 
quency co, so that 

J'o = Jo ej~t (Eq 2) 

Since A" is expected to vary sinusoidally with time, 
A" = A "  e j(~~ = Ae jt~ For induction heating problems, 
V �9 A = 0 (Ref 7) and Eq 1 becomes 

1 V 2 A - j c o t J A - V ( ~ ] x ( V x A ) + J a  = O S t  (Eq 3) 

For the axisymmetric case, the only nonzero component of  the 
vector potential is A0(r,z ). On dropping the 0 subscript, Eq 3 be- 
comes 

1.1.1~02A IDA D2A A ~ _ j ~ o A  D(1/~l)(lOrA'~ 
0 + 

b(14t ) Oa 
+ Dz 3z +J~  = 0  (Eq4) 

After discretization, the general form of the finite-element 
equation is obtained for each element as 

{[k]e+ [/]e} {A} = {F e} 

where 

= J + Dz Dz )rdrdz 

(Eq 5) 

1~. = fS 2~ (1__1_ + jo~ )N iN  j rdrdz 
r ~tr 2 

F e = ~f 2gJoN i rdrdz + f I N i ~ A d s  
v" s,~t Dn 

and N i is the shape function at node i. 
In the formulation, the permeability let is assumed to be con- 

stant within an element but may vary from one element to an- 
other. Also, the permeability could in general depend on 
temperature. 

2.2 Tempera ture  Ana lys i s  

The determination of the temperature field in moving induc- 
tion heat treatment requires an analysis of  the heat source pro- 
duced by the moving coil. Consider a distributive heat source 
of strength g moving along the z axis with a velocity V, as 
shown in Fig. l(a). The energy equation for this problem is 

1 D OT(r , z , t ) )+~z  kDT(r , z , t )  
r Dr ( k r ' "  Dr ( ~z ) 

OT(r, z, t) 
+ g(r,z - z 0 - Vt,t) = pCp Dt (Eq 6) 

with boundary conditions 

DT(0, z, t) 
- - - - 0  

Dr 

(BC) 

DT(a, z, t) 
br 

- -  + h[T(a, z, t) - Tsur] = 0 

and initial condition 

T(r, z, O) = T o (IC) 

where k is thermal conductivity, p is density, Cp is specific heat, 
h is the convection coefficient, and Tsur and T 0, respectively, are 
the temperature of the surroundings and the initial temperature 
of the cylinder. 

The heat source induced by the moving cell is given by: 

g(r,~) = ~co2A(r'~)A*(r'~) 
2 (Eq 7) 

where A*(r, ~) is the complex conjugate of  the magnetic vector 
potential A at a given point, ~ is the distance of a given point 
along the axis from the coil center (i.e., ~ = z - Zo - Vt [see Fig. 
la], and z 0 is the axial coordinate that specifies the initial posi- 
tion of  the coil. 

The calculation of  the temperature field within the work- 
piece can now be carried out in a fixed coordinate system (r, z) 
that is attached to the stationary workpiece or in a moving coor- 
dinate system (r, ~) that is fixed to the moving coil. 

2.2.1 Temperature Analysis in the Fixed Coordinate 
System 

If  a fixed coordinate system is used, the finite-element for- 
mulation for the moving induction heating problem is the same 
as that for the stationary induction heat treatment (Ref5). How- 
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Fig. 1 (a) Coordinate system within an infinitely long cylinder heated by a moving coil. (b) Geometry of the cylinder and coil system. (c) 
Finite-element mesh for the moving coil showing coil cell 
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ever, it is suggested that an updated mesh that includes the new 
position of  the coil element be used to more efficiently describe 
the moving heat source at each time step. It is also suggested 
that the elements on the boundary of  the cylinder that are sub- 
jected to a cooling flux due to convection heat transfer be up- 
dated. 

2.2.2 Temperature Analysis in the Moving Coordinate 
System 

The heat equation can also be formulated in a moving coor- 
dinate system that moves at the same speed as the coil. The 
moving coordinate system offers two advantages: The same 
mesh can be used at each time step, and elements that are sub- 
jected to the convection heat transfer do not change. 

The drawbacks of this analysis procedure are reflected 
when microstructures and residual stresses must be calculated. 
Calculation of these factors depends on temperature and stress 
histories, which thus must be tracked at every point within the 
material. The mapping of  the data from the moving to the fixed 
coordinate system that is necessary for this purpose is compu- 
tationally intensive. Another drawback of  this analysis proce- 
dure is that it can be applied only to infinitely long workpieces. 

2.3 M i c r o s t r u c t u r e  C a l c u l a t i o n  

The calculation of the microstructure was carded out using 
the formulation described by Wang et al. (Ref 8). A typical steel 
microstructure is composed of  several phases. In the finite-ele- 
ment formulation, the material properties, P, at a Gauss point 
were assumed to be a linear combination of  the corresponding 
properties, Pi, of  each phase weighted proportional to the vol- 
ume fraction, F i, of  that phase present at that point�9 Thus any 
material property, P, of  the solid can be written as: 

P(Fi'T) = Z P i (T)F i  ( E q  8)  

i 

where the summation is carded out over all the phases present. 
The kinetics of  the diffusion transformations (i.e., non- 

martensitic) are described in the formulation by the following 
Avrami-type equation (Ref 9, 10): 

F i = 1 - exp[-Ci(T)0Ui( r)] (Eq 9) 

where Ci(T) and Ni(T) are material parameters that are derived 
from the isothermal transformation diagram for the material, 
and 0 is the transformation time for any phase. The calculation 
of  these parameters for 1080 carbon steel, the material of  inter- 
est to this study, is described by Fernandes et al. (Ref 11) and by 
Wang et al. (Ref 5). 

The fraction F m of martensite formed at a given temperature 
was estimated by the Koistinen-Marburger law (Ref 12): 

F m = [1 -exp(-cX(Tms- 7))](1 - ~  F i) (Eq 10) 

i 

where ~ = 1.10 x 10 -2 K -1, Tms is the martensite start tempera- 
ture, and the summation is over all the phases present, exclud- 
ing martensite. The martensitic transformation is not diffusion 
controlled; therefore, its evolution equation (Eq 10) is different 
from that for the pearlitic transformation (Eq 9). Further details 
of the formulation can be found in Ref 8. 

2.4 Remesh Scheme 

In order to predict the residual stresses and microstructures, 
an updated mesh is suggested for use in the fixed coordinate 
system to model the moving coil at each time step. It is also sug- 
gested that the element numbers corresponding to the work- 
piece surfaces that are subjected to the heat flux of  the cooling 
rings be updated. A finite-element remesh scheme has been de- 
veloped to model the moving coil. The scheme is based on the 
shifting of  a small group of  elements referred to as a "coil cell" 
(Fig. 1 and 2). 

The remeshing scheme is applied to a part of  the mesh that 
includes the elements lying along the coil path. The boundary 
of  this strip is ijkl, as shown in Fig. 5. Elements outside this strip 
are not modified. In this remeshing process, the total number of 
nodes and elements is kept constant. 

The updating of  the elements within the strip (coil path) is 
described by the following algorithm (Fig. lc). These notations 
are used in describing the algorithm: 
�9 Z-coil: z coordinate of  the upper boundary of the coil element 
�9 AZ: distance moved during the time interval At 
�9 Zf(i): z coordinate of  the lower boundary of the elements 

ahead of  the coil cell 
�9 N: number of  elements through which the coil cell moves 

during an increment of At 
�9 Cmin: minimum allowable distance to avoid excessive dis- 

tortion of  the mesh 

1. Update the coil position: 

t+At - Zcoil - Ztcoil + A Z  (Eq 11) 

2. Determine the number of elements through which the coil 
cell passes. Find the minimum value of  i that satisfies the 

�9 ! ~+AI equatnon z x i  ) - Z~oil >Cmi n ; then, N is equal to i - 1. In the 
present analysis, Cmi n was  set equal to one-fourth the length 
of the coil cell. 

3. Determine whether the element numbers and nodal num- 
bers need to be updated. I fN  = 0, the coil cell does not move 
forward�9 The element numbers and nodal numbers at time t 
+ At remain the same as that at time t. The coordinate values 
on the outer boundaries of  the cell do not change. The only 
change that must be made is to update the coordinate values 
of the nodal points within the coil cell. This is due to the 
movement of  the coil element within the coil cell. I f N  > 1, 
the coil cell has moved through Nelements. In this case, the 
upper boundary of the coil cell is aligned to the position 
Z~N+I ). N elements below the coil cell are recreated. The 
nodal numbers, element numbers, and coordinate values 
are updated. Figure 2 shows the movement of the coil cell 
for the special case o f N  = 1. 
During the updating procedure, the following method is 

used for renumbering the nodal points. If  the coil cell has 
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Fig. 2 Remesh scheme for the moving coil element 

passed through N elements, then renumbering is done through 
N stages. In other words, it is assumed that the coil cell passes 
through a single element during a stage and nodal point num- 
bers are modified during that stage. When the cell moves 
through an element during a particular stage, a new element is 
created below the coil cell (see Fig. 2). For this new element, 
the nodal point number of  the middle point on the upper bound- 
ary is assigned the value of  the nodal number of  the middle 
point on the upper boundary of  the coil cell at the previous 
stage. The nodal point numbers at the boundaries of  the strip as 
well as within the coil cell are the same as that of  the previous 
stage. 

This algorithm is illustrated by a simple example in Fig. 2. 
As the coil passes through an element, a new element (2) is cre- 
ated. For this element (2) (Fig. 2b), the node at the midpoint of  
the upper boundary is numbered 35, which is the same as that of  
the node at the midpoint of  the upper boundary of  the coil in the 
previous stage (Fig. 2a). 

2.5 Stress Analysis 

A thermoelastic-plastic model that incorporated tempera- 
ture-dependent material properties was used in the stress analy- 
sis of  quenching. The von Mises yield function, with plastic 
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Fig. 3 Geometry and finite-element mesh for an infinitely long 
1080 steel cylinder heated by a moving coil and quenched by a 
moving cooling flux 

flow being controlled by a kinematic hardening rule, was used. 
The formulation of  this thermoelastic-plastic model has been 
described in detail by Wang et al. (Ref 8). 

3. Applications 

In this section, several moving induction heat treatment 
problems are analyzed using the finite-element procedure de- 
scribed in section 2. Calculation of the temperature, residual 
stress, and microstructure distributions is emphasized. 

3.1 Induction Heat Treatment of an Infinitely Long 
C y l i n d e r  H e a t e d  by  a M o v i n g  C o i l  a n d  Q u e n c h e d  by  
a Moving Cooling Ring 

A 1080 steel cylinder, 40 mm in diameter and at an initial 
temperature of 25 ~ is heated by a moving coil with an inner 
diameter of 44 mm and a cross-sectional area of  4 by 4 mm 2 
(Fig. 3). The coil is assumed to move with a constant velocity of 
2.5 rol ls .  First, analytical solutions for the moving heat source 
problem are derived using a Green's function method in section 
3.1.1. Next, the temperature field is obtained using a finite-ele- 
ment procedure based on the moving coordinate system. In the 
finite-element solution, the moving cooling ring is modeled as 
a constant-band cooling flux. The simulation of  the tempera- 
ture field and its comparison with the analytical solution are 
discussed in section 3.1.2. Finally, the complete heat treatment 
process is simulated using the finite-element method with the 
remesh scheme based on the fixed coordinate system. 

3.1.1 Analytical Solutions for Moving Heat Source Prob- 
lems in Induction Heat Treatment 

For an infinitely long cylinder of  radius a subjected to a dis- 
tributed heat source g(r, z, t), the energy equation in cylindrical 
coordinates is 

02T 1 ~T 02T 1 . 1 0T 
Or 2 + r O"-'r + Oz -'--Z + -~g(r, z, t) - ~ 3t (Eq 12) 

with boundary conditions 

0T 
- 0  . r = 0  

Dr 

0T 
- - + H T = 0  r = a  
Dr 

0T 
- - = 0  z=---~ 
0z 

and initial condition 
r:7"0 t=0 

where H = hlk  and h, k, and ~ are the convection heat-transfer 
coefficient, thermal conductivity, and thermal diffusivity, re- 
spectively. 

The Green's function for this problem--that is, the solution 
for the temperature when a delta function heat source, 1/ct 8(r - 
r')8 (z - z')8(t - x), is imposed over a circle at (r', z ' ) - - is  given 
by: 

2 BmJo(~mr )Jo(~m r) 
G(r, z, t lr',z',z) =51(1~2a2= + H2a2)[Jo(~ma)] 2 

"~-~ ~(t - "1:) 
- (z - z') 2 - ap2mtt- x) e 4~(t-x) e . (Eq 13) 

where the [~m terms are the positive roots of the equation 
~mJl(13ma) + HJo(~ma ) = 0. This solution is for the case where 
k and o~ are constant. 

The basic Green's function solution in Eq 13 can be applied 
to a variety of  moving heat source problems. Applications re- 
lated to the moving induction heat treatment of  an infinitely 
long cylinder are described here for three cases. 

3.1.1.1 Moving Ring Source 

The heat source ~ in Eq 12, for a ring source of strength Q 
(W/m) initially at (r 0' z0) and moving with a velocity V, can be 
written as: 

g,(r,z,t) = QS(r - ro)8(z - z 0 - Vt) 

The temperature within the cylinder is then obtained by inte- 
grating the Green's function of Eq 13 as: 
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~ s ;o . . . . . . .  
T(r,z,t) = T O + ~ =0 --~ r G(r,z,t r ,z ,x).g(r ,z ,x)dr dz dx 

~2 Jo(~mro)Jo(~mr ) 
= TO + E (~2a2 + H2a2)[Jo(~ma)12 

m=l 

i t  1 -(z - z o - vx) 2 
X e 4-a~---~ e-C#fm(t-X)dz 

0 ~ a ( t  - x) 
(Eq 14) 

3.1.1.2 Moving Band Source on the Surface of the Cylinder 

I f d Q  = qdz, where q(W/m 2) is the strength of a band source, 
the temperature within the cylinder subjected to such a source 
on the surface located initially at (a,zo) can be obtained by inte- 
grating the ring-source solution of Eq 14 as: 

~q ~2mJo(lSmr) 
T(r,z,t) = T O + T E (132a 2 + H2a2)Jo(~m a) 

m = l  

c 

It 1 - a ~ ( t - x )  I e - ( Z - Z ~  d~d'r 
X 

0 ~-XgO~(t - X) e - c 40t(t - X) 

ao~q [~2mJ0([~mr) 
= TO + ---if- E (1~i2a2 + H2a2)JO(~ma) x ~0 e-CC~2(t - x) 

m=l  

[ z -  z O -  Vt + d+ V ( t -  x)] 
x terfl' / 

L 2~/o~(t- x) J 
(Eq 15) 

Pz z 0 V t - d + V ( t - x ) ]  
- erfl 1 } dx 

L 2~ot(t - X) J 

where d is the half-width of  the band. This equation can be used 
to model a moving cooling ring that induces a band flux on the 
surface of the cylinder. 

3.1.1.3 Moving Distributed Source 

If  an infinitely long cylinder is heated by a distributed heat 
source moving with velocity V, with dQ = g(r,z,t)drdzdt and 
(W/m 3) is the strength, the temperature field within the cylinder 
is given by: 

T(r,z,O : T O 

O~ ~0 1 ~" -(z-z')2 ~ 
+ "ff ~ ( t  - Z) -0o e "~(7 - ~ r'g(r',z" - z 0 - VZ,Z) 

o o  
2 ~}mJo(~m r )Jo(~m r) 

X E ([~2a2 + n2a2)[Jo([~ma)]2 
m=l 

e-Ct~z~(t- x) dr'dz'dx 

(Eq 16) 

During induction heating, the distributed heat source pro- 
duced by the magnetic field can be calculated from the mag- 
netic vector potential using Eq 7. When the properties of  the 
workpiece material are assumed to be constant, the governing 
differential equation in cylindrical coordinates for the mag- 
netic vector potential A is 

O2A 1 OA O2A A 
Or 2 + r ~ - r  + ~z 2 r2 j o ~ t ~ = 0  (Eq 17) 

The equation can be solved for the appropriate boundary condi- 
tions of  induction heating (see Ref 5 for the complete solution). 
The magnetic vector potential within an infinitely long cylinder 
due to current flow in the single coil shown in Fig. 1 (b) is 

A(r,z) = ~tOJO f*  1 x o D(~) F(rl'rt'r2)ll(•lr)Z(q'z)drl (Eq 18) 

where 

D('q) = 1 rl lal0(rl la)K1 (rla) + rlal I (0 la)Ko(T] a) 
l.tr 

+ (1 - 1 )  ll(rlla)Kl(rla ) 
ta r 

it r = --~--; 1.1 l = ~q2 + jo)[to 
iao 

F(rl'q'r2) = ;2  roKl(rlro)dr 0 
r 1 

Z(q,z) = 1 [simi(c - z) + sinrl(c + z)] 

Here J0 is the source current density in the coil and K 0, K 1, I0, 
and I 1 are the appropriate modified Bessel functions in the 
usual notation; and c is the half-width of  the coil. 

3.1.2 Finite-Element Solution Based on the Moving Coor- 
dinate System 

The induction heating of  the infinitely long 1080 steel cylin- 
der (Fig. 3) was simulated by the finite-element method with a 
mesh in the moving coordinate system. A mesh with 154 
isoparametric eight-node axisymmetric elements was used to 
model the entire space, including the cylinder and the coil, as 
shown in Fig. 3. The cooling boundary due to the cooling ring 
was modeled by a band (cooling) flux of  strength 3.0 x 106 
W/m 2. The center of  the band was at z = -6.103 mm, and the 
width of  the band flux was 8.205 mm. The source current den- 
sity and its frequency were 1.38 • 10]~ 2 and 60 Hz, respec- 
tively. For comparison of  the finite-element solution with the 
analytical solution, the material properties of the workpiece 
material were assumed to have constant values of  3 x 106 
mho/m, 7500 kg/m 3, 650 J/kg.K, and 35 W/m.K, respectively, 
for the electrical conductivity, density, specific heat, and ther- 
mal conductivity. 

466---Volume 4(4) August 1995 Journal of Materials Engineering and Performance 



The temperature-time history on the surface of the cylinder 
along a circle located at a distance of 7.17 mm below the coil 
center was calculated using the finite-element method for two 
cases: (1) induction heating without cooling and (2) induction 
heating followed by quenching with a cooling ring. Figure 4 
compares these calculated temperature histories with those ob- 
tained using the Green's function method; the values exhibit 
excellent agreement. 

Three different finite-element meshes (128, 154, and 256 
elements, respectively) were used. Although the 128-element 
results compared favorably with the analytical curves in Fig. 4, 
some small differences existed. The 154-element mesh was 
sufficiently fine that its results did not differ from the 256-ele- 
ment results. 

3.1.3 Finite-Element Solution with the Remesh Scheme 

The induction heating of the infinitely long 1080 steel cylin- 
der was also analyzed using a remesh scheme based on the 
fixed coordinate system. The coordinate system was fixed on 
the cylinder, and each nodal point within the cylinder repre- 
sented a particular point in the material. The entire space com- 
prising the infinitely long cylinder and the moving coil was 
modeled by a mesh of 316 isoparametric eight-node elements, 
in which the coil element was moved at each time step. The cyl- 
inder geometry and the mesh are shown in Fig. 5. 

Figure 6 shows the temperature-time histories at three 
points--D, D', and D"---on the surface of the cylinder (loca- 
tions of these points are shown in Fig. 5) during induction heat- 
ing determined using both the finite-element method and 
Green's function solutions. In this comparison, the material 
properties of the cylinder, source current density, and fre- 
quency of the current in the coil were assumed to be the same as 
those in the previous example. Again, excellent agreement ex- 
ists between the finite-element and the analytical solutions for 
the temperature field. 

Finally, the finite-element procedure was applied to simu- 
late the complete heat treatment cycle involving induction 
heating followed by quenching in water from a moving cooling 
ring (Fig. 5). The heat-transfer boundary due to the moving 
cooling ring was updated at each time step. The convection 
heat-transfer coefficient for water quenching was assumed to 
depend on temperature, and the values used were the same as 
those used by Buchmayr and Kirkaldy (Ref 13). The width of 
the cooling band was 300 mm, with the upper boundary of the 
band located at a distance of 20 mm below the coil center. The 
cylinder surfaces not exposed to the cooling band were sub- 
jected to air cooling during the heating and quenching process. 
The convection coefficient for air cooling was assumed as 200 
W/m2.K. The physical and mechanical properties of the cylin- 
der material were assumed to be temperature dependent and the 
same as those used by Wang et al. (Ref 5). 

Figure 7 shows the calculated temperature-time histories at 
six points in the cylinder. The locations of these points are 
given in Fig. 5. The temperature histories at points A and D 
show some transient response, whereas the results at those 
points farther away from the initial coil position (namely, B, C, 
E, and F) approach the steady-state solution (Fig. 7). Figure 8 
shows the microstructure distribution in the outer region (4 < r 
< 20 mm) of the cylinder where the austenite transformation 
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Fig. 4 Temperature-time histories on the surface of the infi- 
nitely long cylinder at a distance of 7.17 mm below the coil cen- 
ter 
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Fig. 5 Geometry and finite-element mesh for the induction 
heat treatment of an infinitely long 1080 steel cylinder by a mov- 
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Fig. 7 Temperature-time histories at six points of the infinitely 
long cylinder during heat treatment by a moving coil and cool- 
ing rin~. Coil velocity = 2.5 mm/s; current density = 13,800 
AJmm z 

temperature had been reached during heating. The martensitic 
layer (i.e., martensite fraction > 0.5) is seen to extend to a dis- 
tance of about 5 mm from the cylinder surface. The microstruc- 
ture within the inner core (r < 4 mm) retains its original pearlite 
structure. The residual stress distribution (at t = 110 s) along 
the radius BE (see Fig. 5) is shown in Fig. 9. 
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Fig. 9 Residual stress distributions along the radius BE after 
heat treatment (t = 110 s) 

It is of interest to note that three finite-element meshes (236, 
265, and 316 elements, respectively) were used to investigate 
the convergence of results as the mesh was refined. The meshes 
of 236 and 265 gave two sets of temperature-time curves that 
were different from the analytical solution in Fig. 6 by less than 
8 and 5%, respectively. These two sets of curves are not shown 
here. The 316-element mesh gave a set of sufficiently accurate 
temperature-time curves (less than 1% difference) as compared 
with the analytical solution. 
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3.2 Finite Cylinder Heated by a Moving Coil and 
Quenched in a Bath 

In the induction heat treatment of  workpieces such as piston 
pins, a cylindrical workpiece of  finite length is heated by a 
moving coil and quenched in a bath. Therefore, the simulation 
of  the induction heating of 1080 steel cylinders, 80 mm in 
length, by a moving coil and their subsequent quenching in a 
bath was analyzed. Figure 10 shows the geometries of  the cyl- 
inder and the coil and their relative initial positions. A mesh for 
the entire space consisted of 234 eight-node isoparameter ele- 
ments, as shown in Fig. 10. The cylinder was assumed to be at 
an initial temperature of  25 ~ The current density and the cur- 
rent frequency in the coil were the same as those in the previous 
example. The physical and mechanical properties of  1080 steel 
were assumed to be temperature dependent and the same as 
those used by Wang et al. (Ref 5). For a coil moving with a ve- 
locity of  V = 2.5 mm/s, the cylinder was heated for a duration of  
60 s and then cooled in a UCON-A (UCON is the trade name for 
widely used commercial quenching fluid) quenchant bath. The 
convection heat-transfer coefficient for UCON quenchant is 
temperature dependent, and its values were assumed from 
Wang et al. (Ref 8). During the heating cycle, the energy losses 
due to air convection are typically small compared with the 
heat generated by the eddy current and thus were neglected 
here. 
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Fig. 11 Temperature-time histories at six points of the finite 
cylinder during induction heating by a moving coil: Coil veloc- 
ity = 2.5 mm/s; current density = 13,800 A/mm 2 

150 

Figures 11 and 14 show the results of  the finite-element 
simulation. The temperature histories at six points in the cylin- 
der (see Fig. 10 for their locations) during the heat treatment 
process are shown in Fig. 11. From this it is clear that the 
austenite transformation temperature of  723 ~ has been 
reached everywhere within the cylinder during heating. The 
sudden change in the slope of  the temperature-time curve at 
about 620 ~ for point B (Fig. 11) during quenching is due to 
the latent heat released during the pearlitic transformation. Fig- 
ure 12 shows the microstructure distribution after quenching. 
The martensite layer (>50% martensite) is seen to extend to a 
depth of about one-fourth of the cylinder radius after the heat 
treatment process. Figure 13 shows the residual stress distribu- 
tion (t = 150 s) along the radius BE of the cylinder. The cylinder 
is under tension in the inner core, with all three stresses (c  z, a,, 
and o0) being tensile, whereas it is under compression near the 
surface. 

In order to characterize the edge effects in the finite cylinder 
after induction heat treatment, the residual stress (t = 150 s) 
distributions were plotted along the axis of  the cylinder (Fig. 
14). Both the radial and hoop stresses are tensile and equal 
within the cylinder in the region away from the top and bottom 
surfaces (Fig. 14); however, they change quite rapidly at a dis- 
tance of about 10 mm from the end surfaces and become com- 
pressive near the surface. This is due to the effect of  the 
cylinder end faces. 

The effect of  coil velocity on the temperature distribution 
during induction heating was also investigated. The total dis- 
tance of  coil movement was kept constant at 150 mm for this 
purpose. Figure 15 shows the temperature distribution within 
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80 mm long cylinders after induction heating for two different 
coil velocities. It is clear that the temperature distribution cor- 
responding to the lower coil velocity is much more uniform 
than that for a higher velocity. Figure 16 shows the maximum 
temperature difference (ATma x) within the cylinders as function 
of coil velocity for three cylinder of  different lengths (40, 60, 
and 80 mm). These temperature differences were estimated at 
the end of  induction heating. For the cylinders with LID ratios 
closer to 1, a uniform temperature distribution can be obtained 
by using a lower coil velocity. When LID increases, a local 
minimum is observed in ATrnax; this occurs at a velocity of  V = 
2.5 mm/s for the 80 mm long cylinder (Fig. 16). Although a 
more uniform temperature distribution can be obtained by us- 
ing a lower coil velocity (e.g., V = 0.1 mm/s rather than V = 2.5 
mm/s), this has the disadvantage that the heating time will be 
increased by a factor of  25 compared to V = 2.5 mm/s. 

3.3 Induction Heat Treatment of Finite Cylinders by 
Stationary Solenoidal Coils 

The induction heat treatment of  80 mm long 1080 carbon 
steel cylinders using multiturn (solenoidal) coils was then ana- 
lyzed. An objective of this study was to investigate the effect of  
the coil spacing on the temperature and residual stress distribu- 
tions developed during heat treatment. 

Figures 17 and 18 show the geometries of  the cylinder and 
the two solenoidal coils considered in the heat treatment simu- 
lation. Both of  the solenoidal coils have 11 turns, and their inner 
radii are the same (22 mm). However, the spacing between con- 
secutive turns of  the coil is constant for the coil shown in Fig. 
17 (uniform coil), whereas the one shown in Fig. 18 has a vary- 
ing spacing between consecutive turns (nonuniform coil). The 
cross sections of the coils were 4 by 4 mm 2, and the source cur- 
rent frequency was 60 Hz in both cases. The source current den- 
sities used with the uniform and nonuniform coils were 1.5 x 
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109 and 1.55 • 109A/m 2, respectively, so that the average tem- 
perature of the workpiece after induction heating for 60 s was 
about the same in both cases. The material properties of  1080 
carbon steel were assumed to be temperature dependent and the 
same as those used by Wang et al. (Ref 5). 

Figures 17 and 18 show the finite-element meshes used in 
the temperature and residual stress analyses. Meshes with 141 

and 157 eight-node isoparametric elements were used to model 
half of  the space with the uniform and the nonuniform coils, re- 
spectively. It must be noted that for the uniform coil three 
meshes of  105, 141, and 210 elements were used and that for 
the nonuniform coil three meshes of  118, 157, and 224 ele- 
ments were used. The 141- and 157-element meshes were the 
coarsest required to obtain sufficiently converged results for 
the two problems. 

Figure 19 shows the temperature distributions within the 
cylinders after induction heating for 60 s by the two types of  so- 
lenoidal coils. The temperature distribution in the cylinder 
heated by the nonuniform coil is seen to be much more uniform 
than in the cylinder heated by the uniform coil. Also, compari- 
son of  the temperature distributions of  Fig. 19 with those ob- 
tained during induction heating by a moving single coil (see 
Fig. 15) shows that a more uniform temperature distribution 
within the cylindrical workpiece can be obtained by using a sin- 
gle coil moving at an appropriate velocity than with a uniform 
solenoidal coil. Thus, the results show that relatively uniform 
temperature distributions within workpieces during induction 
heating can be achieved by adjusting either the velocity of a 
moving coil or the spacing of  a stationary solenoidal coil. 

Figure 20 shows the residual stress distributions along the 
radius AB in the cylinders after heat treatment. The stresses 
were calculated using the finite-element method. It was as- 
sumed that the heated cylinders were quenched in a bath of  
UCON-A; the convection coefficient for UCON-A was the 
same as in the previous example and taken from Wang et al. 
(Ref 8). There appears to be little difference in the residual 
stresses produced by the two types of  solenoidal coils. This ex- 
ample suggests that the simulation procedures could be use- 
fully applied in coil design. 
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Fig. 20 Residual stress distributions along the radius AB of the 
heat-treated cylinders. 

Fig. 18 Geometry and finite-element mesh for a finite cylinder 
heated by a nonuniform solenoidal coil 

Fig. 19 Temperature contours in the finite cylinder after induc- 
tion heating by uniform and non-uniform solenoidal coils (t = 60 
seconds). 

4. Conclusion 

A finite-element procedure with a remesh scheme has been 
developed and applied to simulate moving induction heat treat- 
ment problems. The temperature, microstructure, and residual 
stress distributions developed in 1080 steel cylinders after in- 
duction heat treatment have been calculated. The effect of  coil 
velocity and coil spacing (for multiturn solenoidal coils) on 
temperature distributions during induction heating has also 
been analyzed. Analytical solutions for the magnetic vector po- 
tential and temperature distribution have been derived using 
Green's function methods for some moving coil problems; 
these solutions have enabled validation of  the finite-element 
analysis of  moving induction heating. The simulation proce- 
dure can serve as a useful design tool in induction coil design 
and in the selection of process parameters. 
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